Practical Tips To Develop A Lentivirus Packaging Cell Line
Article inspired by a Tapas and TECH Talks digital event. Fast Trak Centre for Advanced Therapeutic Cell Technologies (CATCT) team members shared peer-to-peer insights.
Cell lines have transformed scientific research. Also, they are used to increase titer and allow process developers to move molecules into the clinic faster. Bioprocessing often uses well-characterized cell lines to achieve processes that are both robust and reproducible. Optimizing the cell line can speed up process characterization and validation activities for scale-up by predicting manufacturing behavior at an early stage.
In a CAR T workflow, patient material is enriched for T cells and expanded in bioreactors to get the appropriate dosage. The chimeric antigen receptor (CAR) is introduced to the cells through lentiviral vectors (LV). However, these therapies are expensive, and LV production represents a large portion of these costs. High manufacturing costs for LV are driven by low efficiencies from limited scalability in adherent cell culture, as well as requirements for large manufacturing spaces and several manual manipulations that increase labor costs. At the Centre for Advanced Therapeutic Cell Technologies (CATCT) scientists are working to address obstacles like these that hinder commercialization of cell therapies. One project is aimed at reducing LV production costs.
Get unlimited access to:
Enter your credentials below to log in. Not yet a member of Life Science Leader? Subscribe today.